
Documentation

What Is a Hierarchy Folder?

A hierarchy folder is an editor-only GameObject meant to
help in organizing the GameObjects in your scenes.

Technically speaking it can be seen as a GameObject that
contains the HierarchyFolder component.

In practice though, it is more intuitive to think of it as a whole
new GameObject type, because it acts in many ways very
differently from your typical GameObjects:

1. A hierarchy folder only exists in the editor. When you
make a build, all hierarchy folder GameObjects are
removed from every scene included in the build. All
GameObjects that were nested under the hierarchy
folders are pushed up the parent chain until they are
the child of a GameObject that isn't a hierarchy
folder, or they exist in the root of the scene hierarchy.

2. You cannot add components to a hierarchy folder. The moment you do, the
GameObject seizes to be a hierarchy folder.

3. For all intents and purposes a hierarchy folder has no transform component. If you
look at a hierarchy folder in the inspector, you won't see a transform component. If
you try to move, rotate or scale a hierarchy folder, it just immediately reverts back to
its previous state (without affecting the world space state of any of its children).

Creating New Hierarchy Folders
There are various ways you can use to create new hierarchy folders.

1. Hierarchy View Create Menu

To create a new hierarchy folder into the loaded scene, click the plus button found on the
Hierarchy view toolbar and select the item Hierarchy Folder. This will add a new hierarchy
folder into the active scene.

If you have one target selected in the hierarchy, the new hierarchy folder will be created
above it in the hierarchy.

If you have more than one target selected in the hierarchy, all of the selected objects will
be grouped under the hierarchy folder that is created.

2. GameObject Menu

You can also create a new hierarchy folder using the main menu item GameObject >
Hierarchy Folder, or the shortcut key Ctrl + Shift + G.

3. Editor Tools Toolbar

A third way you can create new hierarchy folders is by clicking the button found on the
Editor tools toolbar.

In order for the button to appear in your toolbar you have to activate it first. Here are the
steps needed to do this:

1. Click the Custom Editor Tools button found on the Editor Tools toolbar.

2. Select the Hierarchy Folder item to set it activate.

After this the Create Hierarchy Folder button appear in the toolbar. New hierarchy folders
can be created by clicking this button.

Converting GameObjects Into Hierarchy
Folders
In addition to creating new hierarchy folders from scratch, it is also possible to take
existing GameObjects and convert them into hierarchy folders.

This can be useful if you have a project that contains scene hierarchies where you have
grouped your objects under empty GameObjects, which you would now like to convert into
hierarchy folders.

There are various methods you can use to convert empty GameObjects into hierarchy
folders.

1. Tools Menu

You can convert empty GameObjects into a hierarchy folder using the menu items found in
the main menu under Tools > Hierarchy.

1.1. Convert Selected

To convert one or more empty GameObjects into hierarchy folders, select them in the
hierarchy view and then select the menu item Tools > Hierarchy > Convert Selected to
Hierarchy Folders.

You can also do this by using the keyboard shortcut Ctrl + Alt + Shift + G.

1.2. Convert Entire Scene

You can also automatically convert all root GameObjects in the active scene into hierarchy
folders by selecting the menu item Tools > Hierarchy > Convert Scene Root to Hierarchy
Folders.

This will turn all empty GameObjects in the root of the active scene into hierarchy folders,
as well as group all GameObjects in the root that contain components under newly created
hierarchy folders.

2. HierarchyFolder Component

You can also turn any empty GameObject into a hierarchy folder by adding the
HierarchyFolder component to it.

When you do this, the Transform component of the GameObject will be reset to its default
state. This will be done in such a way that the world space positions of child GameObjects
will not be affected in any way.

This method can be especially useful if you want to programmatically convert a
GameObject into a hierarchy folder from a script.

Hierarchy View Enhancements

1. Folder Icons

By default all hierarchy folders will have a unique icon in the hierarchy view to clearly
distinguish them from normal GameObjects.

You can customize these icons or turn them off completely in the preferences view.

2. Select All Children

When you double-click a normal GameObject in the hierarchy view it causes the Scene
view camera to focus on that GameObject.

Hierarchy folders however are positionless entities and as such the same behaviour would
not make sense when they are double-clicked.

Instead when you double-click hierachy folder the following things happen:
1. The hierarchy folder is unfolded in the hierarchy view.
2. All the child GameObjects and hierarchy folders inside the double-clicked hierarchy

folder are folded in the hierarchy view.
3. All the child GameObjects and hierarchy folders inside the double-clicked hierarchy

folder are selected in the hierarchy view.

Customizing Hierarchy Folders

You can customize many aspects of hierarchy folders to fit the specific needs of your
project from the preferences view.

To open the hierarchy folders preferences view select the main menu item

Edit > Preferences… and activate the Hierarchy Folders view from the side bar in the
window that opens.

NOTE: Always press the Apply button when you want to apply the changes you have made
in the preferences. Otherwise the changes will not be saved.

The following preferences are available for customization in the view:

• Default Name – The initial name given to new hierarchy folders you create using
one of the main menu items.

• Auto-Name on Add – If true, then the name of GameObjects with a default names
(”GameObject”, ”GameObject (1)” etc.) will be changed to match the value of the
Default Name preference item, when a HierarchyFolder component is added to
them.

• Name Prefix – A prefix with which the name of all hierarchy folder GameObjects
should begin.

◦ WARNING: if you change the value of this item, the old prefixes will currently not
be automatically removed before the new ones are added. So if you change it to
”===” from ”- - -” , then all your existing hierarchy folders will get the prefix ”===- -
-”.

• Name Suffix – A suffix with which the name of all hierarchy folder GameObjects
should end.

◦ WARNING: if you change the value of this item, the old suffixes will currently not
be automatically removed before the new ones are added. So if you change it to
”===” from ”- - -” , then all your existing hierarchy folders will get the suffix ”- -
-===”.

• Force Names Upper Case – If true, then the names of all hierarchy folder
GameObjects will use to upper case lettering.

◦ WARNING: if you activate this preference item, its changes cannot be
automatically reverted. This means that if you want to change back, you will
have to manually rename all affected hierarchy folders to not use all upper case
letters.

• Remove From Build - If true then all hierarchy folders will be removed from all
scenes during the build process. All child GameObjects will be moved upwards the
parent chain until they are the child of a normal GameObject or exist in the root of
the hierarchy.

◦ NOTE: If this false, then the hierarchy folder GameObjects will survive the build
process, and none of their child GameObjects will be unparented. However in
builds the hierarchy folders will lose all of their special properties, and
essentially becomes just normal GameObjects. This means that their transform

states will no longer be locked, and they won’t react to new components being
added on the GameObject.

• Warn When Not Removed From Build – Determines whether or not a popup should
appear to warn you when you attempt to make a build with the preference item
Remove From Build disabled.

• Play Mode Behaviour - This item determines how hierarchy folders will operate
when play mode is active in the Unity editor.

◦ None – Hierarchy folders are not removed when entering play mode, nor are any
of their child GameObjects unparented. This means that the behaviour is
identical between play mode and edit mode. Selecting this can negatively affect
performance in play mode.

◦ Flatten Hierarchy - All the child GameObjects of hierarchy folders are moved up
the parent chain. The hierarchy folders themselves are not destroyed, but will
remain in the root of the scene as visual dividers between your GameObjects.
Any GameObjects that are grouped under hierachy folders in play mode will
automatically get detached and moved below them it in the hierarchy. This
negates most of the negative performance impact that hierarchy folders
normally would have in play mode, but the reparenting itself and the checking if
reparenting needs to be done can have some overhead.

◦ Disable Component – All the hierarchy folder components are disabled when
entering play mode. All the child GameObjects of hierarchy folders will remain
grouped under these disabled hierarchy folders. GameObjects that are grouped
under the hierarchy folders in play mode also will not automatically get
detached.

◦ Destroy Component – All the child GameObjects of hierarchy folders are moved
up the parent chain, and the hierarchy folders themselves are converted into
normal GameObjects. The GameObjects that used to be hierarchy folders
however are not destroyed, but will remain in the root of the scene as visual
dividers between your GameObjects.

◦ Flatten Hierarchy And Disable Component – All the child GameObjects of
hierarchy folders are moved up the parent chain, and the hierarchy folders
themselves are disabled. The hierarchy folders are not destroyed, but will remain
in the root of the scene as visual dividers between your GameObjects. Any
GameObjects that are grouped under these disabled hierarchy folders in play
mode will not automatically get detached.

◦ Flatten Hierarchy And Destroy Component – All the child GameObjects of
hierarchy folders are moved up the parent chain, and the hierarchy folders
themselves are converted into normal GameObjects. The GameObjects that

used to be hierarchy folders however are not destroyed, but will remain in the
root of the scene as visual dividers between your GameObjects.

◦ Whole GameObject – All the child GameObjects of hierarchy folders are moved
up the parent chain, and the hierarchy folder GameObjects are completely
removed from the scene. This means that the scene hierarchy will be identical to
the way it is in the final build.

• Info Box Text – Text that will be shown in the inspector

◦ NOTE: This can only be seen in Power Inspector which supports customizing the
GameObject drawer. It can not be seen when using the the default Unity
inspector.

• Enable Hierarchy Icons – If true, then all hierarchy folders will get a nice folder icon
in the hierarchy view, distinguishing them from other GameObjects.

• Enable Menu Items – If you do not want the item GameObject > Hierarchy Folder
and the items under Tools > Hierarchy to exist in your main menu, you can disable
them by setting this item to false.

• Enable Toolbar Icon – If you do not want the Create Hierarchy Folder button to
appear as on option for your Editor Tools toolbar, you can disable it by setting this
item to false.

• Extension Methods In Global Namespace – Determines whether or not hierarchy
folders related extension methods such as GameObject.IsHierarchyFolder and
Transform.GetRoot should always be shown, or only when you add ”using
Sisus.HierarchyFolders;” at the top of your class.

◦ NOTE: you will also need an Assembly Definition File with a reference to
Sisus.HierarchyFolders for the extension methods to become available in your
classes.

• Icons – You can customize the icons used by hierarchy folders in the hierarchy view
for the four different skins used by Unity. If no icon is specified, then a default icon
will be used instead.

◦ Modern Light – Icons used in unity versions 2019.3 and higher when using the
personal editor theme.

◦ Modern Dark – Icons used in unity versions 2019.3 and higher when using the
professional editor theme.

◦ Classic Light – Icons used in unity versions older than 2019.3 when using the
personal editor theme.

◦ Classic Dark – Icons used in unity versions older than 2019.3 when using the
professional editor theme.

http://u3d.as/1sNc
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html

